Author:
Egly Uwe,Kronegger Martin,Lonsing Florian,Pfandler Andreas
Funder
Austrian Science Fund (AT)
Deutsche Forschungsgemeinschaft (DE)
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Artificial Intelligence
Reference50 articles.
1. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for incremental SAT solving with assumptions: Application to MUS extraction. In: Proc. SAT 2013, LNCS, vol. 7962, pp. 309–317. Springer (2013)
2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)
3. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in the presence of incompleteness. Artif. Intell. 122(1-2), 241–267 (2000)
4. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proc. STACS 2015, LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)
5. Biere, A.: Resolve and expand. In: Proc. SAT 2004, LNCS, vol. 3542, pp. 59–70. Springer (2004)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献