Abstract
AbstractThe architecture described in this paper encodes a theory of intentions based on the key principles of non-procrastination, persistence, and automatically limiting reasoning to relevant knowledge and observations. The architecture reasons with transition diagrams of any given domain at two different resolutions, with the fine-resolution description defined as a refinement of, and hence tightly-coupled to, a coarse-resolution description. For any given goal, nonmonotonic logical reasoning with the coarse-resolution description computes an activity, i.e., a plan, comprising a sequence of abstract actions to be executed to achieve the goal. Each abstract action is implemented as a sequence of concrete actions by automatically zooming to and reasoning with the part of the fine-resolution transition diagram relevant to the current coarse-resolution transition and the goal. Each concrete action in this sequence is executed using probabilistic models of the uncertainty in sensing and actuation, and the corresponding fine-resolution outcomes are used to infer coarse-resolution observations that are added to the coarse-resolution history. The architecture’s capabilities are evaluated in the context of a simulated robot assisting humans in an office domain, on a physical robot (Baxter) manipulating tabletop objects, and on a wheeled robot (Turtlebot) moving objects to particular places or people. The experimental results indicate improvements in reliability and computational efficiency compared with an architecture that does not include the theory of intentions, and an architecture that does not include zooming for fine-resolution reasoning.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Artificial Intelligence
Reference31 articles.
1. Balai, E., Gelfond, M., Zhang, Y.: Towards Answer Set Programming with Sorts. In: International Conference on Logic Programming and Nonmonotonic Reasoning. Corunna, Spain (2013)
2. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: AAAI Spring Symposium on Logical Formalization of Commonsense Reasoning, pp. 9–18 (2003)
3. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the National Conference on Artificial Intelligence, vol 20, p. 689 (2005)
4. Blount, J., Gelfond, M., Balduccini, M.: Towards a Theory of Intentional Agents. In: Knowledge Representation and Reasoning in Robotics. AAAI Spring Symp. Series, pp. 10–17 (2014)
5. Blount, J., Gelfond, M., Balduccini, M.: A Theory of Intentions for Intelligent Agents. In: International Conference on Logic Programming and Nonmonotonic Reasoning, pp. 134–142. Springer (2015)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献