Parallel homological calculus for 3D binary digital images

Author:

Díaz-del-Río Fernando,Molina-Abril Helena,Real PedroORCID,Onchis Darian,Blanco-Trejo Sergio

Abstract

AbstractTopological representations of binary digital images usually take into consideration different adjacency types between colors. Within the cubical-voxel 3D binary image context, we design an algorithm for computing the isotopic model of an image, called (6, 26)-Homological Region Adjacency Tree ((6, 26)-Hom-Tree). This algorithm is based on a flexible graph scaffolding at the inter-voxel level called Homological Spanning Forest model (HSF). Hom-Trees are edge-weighted trees in which each node is a maximally connected set of constant-value voxels, which is interpreted as a subtree of the HSF. This representation integrates and relates the homological information (connected components, tunnels and cavities) of the maximally connected regions of constant color using 6-adjacency and 26-adjacency for black and white voxels, respectively (the criteria most commonly used for 3D images). The Euler-Poincaré numbers (which may as well be computed by counting the number of cells of each dimension on a cubical complex) and the connected component labeling of the foreground and background of a given image can also be straightforwardly computed from its Hom-Trees. Being $$I_D$$ I D a 3D binary well-composed image (where D is the set of black voxels), an almost fully parallel algorithm for constructing the Hom-Tree via HSF computation is implemented and tested here. If $$I_D$$ I D has $$m_1{\times } m_2{\times } m_3$$ m 1 × m 2 × m 3 voxels, the time complexity order of the reproducible algorithm is near $$O(\log (m_1{+}m_2{+}m_3))$$ O ( log ( m 1 + m 2 + m 3 ) ) , under the assumption that a processing element is available for each cubical voxel. Strategies for using the compressed information of the Hom-Tree representation to distinguish two topologically different images having the same homological information (Betti numbers) are discussed here. The topological discriminatory power of the Hom-Tree and the low time complexity order of the proposed implementation guarantee its usability within machine learning methods for the classification and comparison of natural 3D images.

Funder

MINECO Spain

MINECO, SPAIN

Junta de Andalucía

Publisher

Springer Science and Business Media LLC

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3