Application of Heating Type Micro-Assembly Device in Two-Photon Micromachining

Author:

Xia Jintao,Ding Afei,Wang Pan,Wang Hang,Gu Yinwei,Tao Weidong,Wang Gang

Abstract

AbstractThe development of micro-fabrication and micro-assembly technology is indispensable for the future manufacturing of miniaturized, functional, and integrated devices. This paper proposes a planar micro-assembly technology to make the assembly of micro-objects easier. Firstly, delicate three-dimensional (3D) structures were fabricated on glass and silicon slice substrates using femtosecond laser two-photon polymerization (2PP). Secondly, transparent fluorescent scintillation ceramic powder, referred to as fluorescent powder, was assembled using a laboratory-made 3D moving heating micro-operator into a microstructure on a glass substrate, and this device is used to assemble the graphene powder into the microstructure on the silicon slice substrate. The fluorescence spectra and Raman spectra characterizations of the fluorescent powder and graphene powder in the microstructure were carried out by using excitation light at 405 nm and 532 nm, respectively. According to the above results, it can be concluded that the powder properties of the fluorescent powder and graphene powder assembled into the microstructure were not changed. The experimental device could not only assemble many micron-sized powder materials into hollow microstructures of arbitrary shape but also joined microstructures with different materials and characteristics to form a complex hybrid microstructure system.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference26 articles.

1. Y. L. Chen, F. Zhang, Q. Shan, and X. H. Zhang, “Application progress of precision forming technology in aerospace,” Material Science and Technology, 2013, 21(4): 57–64.

2. M. Mielke, “The hole story: Femtosecond manufacturing improves automobile fuel efficiency,” Laser Focus World, 2013, 49(11): 35–41.

3. L. D. Garza-García, L. M. Carrillo-Cocom, D. Araiz-Hernández, P. Soto-Vázquez, J. López-Meza, E. J. Tapia-Mejía, et al., “A biopharmaceutical plant on a chip: continuous micro-devices for the production of monoclonal antibodies,” Lab on A Chip, 2013, 13(7): 1243.

4. M. Khan, S. Mao, W. Li, and J. M. Lin, “Microfluidic devices in the fast-growing domain of single-cell analysis,” Chemistry — A European Journal, 2018, 24(58): 15398–15420.

5. G. Yang, J. A. Gaines, and B. J. Nelson, “A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly,” in Proceedings of 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), South Korea, May 21–26, 2001, pp. 133–138.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3