Output Prediction of Helical Microfiber Temperature Sensors in Cycling Measurement by Deep Learning

Author:

Chen Minghui,Han Jinjin,Liu Juan,Zheng Fangzhu,Geng Shihang,Tang Shimeng,Wu Zhijun,Pu Jixiong,Zhang Xining,Dai Hao

Abstract

AbstractThe inconsistent response curve of delicate micro/nanofiber (MNF) sensors during cycling measurement is one of the main factors which greatly limit their practical application. In this paper, we proposed a temperature sensor based on the copper rod-supported helical microfiber (HMF). The HMF sensors exhibited different light intensity-temperature response relationships in single-cycle measurements. Two neural networks, the deep belief network (DBN) and the backpropagation neural network (BPNN), were employed respectively to predict the temperature of the HMF sensor in different sensing processes. The input variables of the network were the sensor geometric parameters (the microfiber diameter, wrapped length, coiled turns, and helical angle) and the output optical intensity under different working processes. The root mean square error (RMSE) and Pearson correlation coefficient (R) were used to evaluate the predictive ability of the networks. The DBN with two restricted Boltzmann machines (RBMs) provided the best temperature prediction results (RMSE and R of the heating process are 0.9705 °C and 0.9969, while the values of RMSE and R of the cooling process are 0.786 6 °C and 0.997 7, respectively). The prediction results obtained by the optimal BPNN (five hidden layers, 10 neurons in each layer, RMSE=1.126 6 °C, R=0.995 7) were slightly inferior to those obtained by the DBN. The neural network could accurately and reliably predict the response of the HMF sensor in cycling operation, which provided the possibility for the flexible application of the complex MNF sensor in a wide sensing range.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3