Actual Sensing Sensitivity and SNR Measurement of Optical Tweezers Based on Coulomb Force Input

Author:

Wang Jiaojiao,Chen Xingfan,Zhu Shaochong,Fu Zhenhai,Li Nan,Hu Huizhu

Abstract

AbstractSensing sensitivity is the key performance of optical tweezers. By adjusting the frequency and magnitude of an applied Coulomb force as an input of optical tweezers, we directly measured the sensitivity and signal-to-noise ratio (SNR) of a system and indirectly calculated the actual noise magnitude. Combined with an output filter, the relationship between the SNR and bandwidths was studied. We established the simulation model of a system using Simulink and simulated the relationship between the SNR and magnitude of the input forces and filter bandwidths. In addition, we built an experimental system to determine the relationship between the SNR and the magnitude of the input forces and filter bandwidths. The actual minimum detectable force was measured as 1.8275×10−17 N at a 1 Hz bandwidth. The experimental results were correlated with the simulation and theoretical results, confirming the effectiveness of the proposed method and demonstrating the high sensitivity of vacuum optical tweezers as mechanical sensors. We proposed a novel method of calibration and measurement of system sensing parameters by applying an actual force that was more direct and precise than the theoretical calculation method that requires accurate fitting parameters, such as the particle radius and density. This method can be employed to analyze the system noise and phase characteristics to confirm and improve the real performance of the system.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3