Transparent Object Reconstruction Based on Compressive Sensing and Super-Resolution Convolutional Neural Network

Author:

Mathai Anumol,Mengdi Li,Lau Stephen,Guo Ningqun,Wang Xin

Abstract

AbstractThe detection and reconstruction of transparent objects have remained challenging due to the absence of their features and variations in the local features with variations in illumination. In this paper, both compressive sensing (CS) and super-resolution convolutional neural network (SRCNN) techniques are combined to capture transparent objects. With the proposed method, the transparent object’s details are extracted accurately using a single pixel detector during the surface reconstruction. The resultant images obtained from the experimental setup are low in quality due to speckles and deformations on the object. However, the implemented SRCNN algorithm has obviated the mentioned drawbacks and reconstructed images visually plausibly. The developed algorithm locates the deformities in the resultant images and improves the image quality. Additionally, the inclusion of compressive sensing minimizes the measurements required for reconstruction, thereby reducing image post-processing and hardware requirements during network training. The result obtained indicates that the visual quality of the reconstructed images has increased from a structural similarity index (SSIM) value of 0.2 to 0.53. In this work, we demonstrate the efficiency of the proposed method in imaging and reconstructing transparent objects with the application of a compressive single pixel imaging technique and improving the image quality to a satisfactory level using the SRCNN algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3