Investigation of Strain-Temperature Cross-Sensitivity of FBG Strain Sensors Embedded Onto Different Substrates

Author:

Qin Heying,Tang Pengfei,Lei Jing,Chen Hongbin,Luo Boguang

Abstract

AbstractThe strain-temperature cross-sensitivity problem easily occurs in the engineering strain monitoring of the self-sensing embedded with fiber Bragg grating (FBG) sensors. In this work, a theoretical investigation of the strain-temperature cross-sensitivity has been performed using the temperature reference grating method. To experimentally observe and theoretically verify the problem, the substrate materials, the preloading technique, and the FBG initial central wavelength were taken as main parameters. And a series of sensitivity coefficients calibration tests and temperature compensation tests have been designed and carried out. It was found that when the FBG sensors were embedded on different substrates, their coefficients of the temperature sensitivity were significantly changed. Besides, the larger the coefficients of thermal expansion (CTE) of substrates were, the higher the temperature sensitivity coefficients would be. On the other hand, the effect of the preloading technique and FBG initial wavelength was negligible on both the strain monitoring and temperature compensation. In the case of similar substrates, we did not observe any difference between temperature sensitivity coefficients of the temperature compensation FBG with one free end or two free ends. The curves of the force along with temperature were almost overlapped with minor differences (less than 1%) gained by FBG sensors and pressure sensors, which verified the accuracy of the temperature compensation method. We suggest that this work can provide efficient solutions to the strain-temperature cross-sensitivity for engineering strain monitoring with the self-sensing element embedded with FBG sensors.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference31 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3