Single Photon Compressive Imaging Based on Digital Grayscale Modulation Method

Author:

Yuan Chenglong,Yan Qiurong,Wu Yiqiang,Wang Yifan,Wang Yuhao

Abstract

AbstractIn single-pixel imaging or computational ghost imaging, the measurement matrix has a great impact on the performance of the imaging system, because it involves modulation of the optical signal and image reconstruction. The measurement matrix reported in the existing literatures is first binarized and then loaded onto the digital micro-mirror device (DMD) for optical modulation, that is, each pixel can only be modulated into on-off states. In this paper, we propose a digital grayscale modulation method for more efficient compressive sampling. On the basis of this, we demonstrate a single photon compressive imaging system. A control and counting circuit, based on field-programmable gate array (FPGA), is developed to control DMD to conduct digital grayscale modulation and count single-photon pulse output from the photomultiplier tube (PMT) simultaneously. The experimental results show that the imaging reconstruction quality can be improved by increasing the sparsity ratio properly and compressive sampling ratio (SR) of these gray-scale matrices. However, when the compressive SR and sparsity ratio are increased appropriately to a certain value, the reconstruction quality is usually saturated, and the imaging reconstruction quality of the digital grayscale modulation is better than that of binary modulation.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3