Author:
Lai Tianting,Cheng Pu,Yan Congliao,Li Chi,Hu Wenbin,Yang Minghong
Abstract
AbstractA fiber-optic shape sensing based on 7-core fiber Bragg gratings (FBGs) is proposed and experimentally demonstrated. The investigations are presented for two-dimensional and three-dimensional shape reconstruction by distinguishing bending and twisting of 7-core optical fiber with FBGs. The curvature and bending orientation can be calculated by acquiring FBG wavelengths from any two side cores among the six outer cores. And the shape sensing in three-dimensional (3D) space is computed by analytic geometry theory. The experiments corresponding of two-dimensional (2D) and 3D shape sensing are demonstrated and conducted to verify the theoretical principles. The resolution of curvature is about 0.1m−1 for 2D measuring. The error of angle in shape reconstruction is about 1.89° for 3D measuring. The proposed sensing technique based on 7-core FBGs is promising of high feasibility, stability, and repeatability, especially for the distinguishing ability on the bending orientation due to the six symmetrical cores on the cross-section.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献