Modeling and analysis of switching max-plus linear systems with discrete-event feedback

Author:

Mohamadkhani AlirezaORCID,Geilen MarcORCID,Voeten JeroenORCID,Basten TwanORCID

Abstract

AbstractSwitching max-plus linear system (SMPLS) models are an apt formalism for performance analysis of discrete-event systems. SMPLS analysis is more scalable than analysis through other formalisms such as timed automata, because SMPLS abstract pieces of determinate concurrent system behavior into atomic modes with fixed timing. We consider discrete-event systems that are decomposed into a plant and a Supervisory Controller (SC) that controls the plant. The SC needs to react to events, concerning e.g. the successful completion or failure of an action, to determine the future behavior of the system, for example, to initiate a retrial of the action. To specify and analyze such system behavior and the impact of feedback on timing properties, we introduce an extension to SMPLS with discrete-event feedback. In this extension, we model the plant behavior with system modes and capture the timing of discrete-event feedback emission from plant to SC in the mode matrices. Furthermore, we use I/O automata to capture how the SC responds to discrete-event feedback with corresponding mode sequences of the SMPLS. We define the semantics of SMPLS with events using new state-space equations that are akin to classical SMPLS with dynamic state-vector sizes. To analyze the extended models, we formulate a transformation from SMPLS with events to classical SMPLS with equivalent semantics and properties such that performance properties can be analyzed using existing techniques. Our approach enables the specification of discrete-event feedback from the plant to the SC and its performance analysis. We demonstrate our approach by specifying and analyzing the makespan of a flexible manufacturing system.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Modeling and Simulation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3