Different Lengths of Percutaneous Transverse Iliosacral Screw in Geometric Osseous Fixation Pathway: A Finite-Element Analysis

Author:

Wu Qiong,Zhang Yuanzhi,Wang Shaobai,Liu Rui,Liu Gang

Abstract

Abstract Objective To evaluate the biomechanical performances of the sacroiliac screw fixation of the first sacral vertebra with different lengths of screws using the Finite-Element Method. Methods First, pelvic CT images were generated from a healthy volunteer, and multislice sagittal views were produced to determine the axis for the first sacral vertebra geometric osseous fixation pathway (GOFP). Subsequently, according to the geometric size and mechanical parameters of the iliosacral screw, the screw models with the same diameter of 7.3 mm and different lengths of 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm and 140 mm were built. Then the seven screws were assembled with the pelvic model. The maximum von Mises stress and the shape variables were evaluated for the pelvis and the screws. Results Results are shown for the pelvic and GOFP screw, respectively. The simulation results show that the maximum von Mises stress in the cortex of the pelvic ring of the pelvis with the 130-mm length screw is the lowest among the pelvic models with different screws. Moreover, the peak displacement of the pelvis with the 130-mm length screw is the smallest. These results indicate that under the standing condition, a 130-mm length screw can decrease the stress concentration and result in a more effective transfer of stress within the reconstructed pelvis. In addition, the displacement of the screw with a 130-mm length is the smallest among all the considered screws. The peak von Mises stresses in the 130-mm length screw and the cortex are still within a low and elastic range below the yielding strengths of the materials. Conclusion Through the finite element analysis, the GOFP can be used as a safe and effective way for iliosacral screw fixation. The optimal length of the screw may be 130 mm length.

Funder

National Natural Science Foundation of China

Science & Technology Achievement Translation Project of Inner Mongolia Autonomous Region of China

Research and Development Project on applied technology in the field of health of Inner Mongolia

“Zhiyuan” talent program of Inner Mongolia Medical University

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3