The influence of variable emissivity on lava flow propagation modeling

Author:

Thompson James O.ORCID,Ramsey Michael S.

Abstract

AbstractModeling lava flow propagation is important to determine potential hazards to local populations. Thermo-rheological models such as PyFLOWGO track downflow cooling and rheological responses for open-channel, cooling-limited flows. The dominant radiative cooling component is governed partly by the lava emissivity, which is a material property that governs the radiative efficiency. Emissivity is commonly treated as a constant in cooling models, but is shown here to vary with temperature. To establish the effect of temperature on emissivity, high spatiotemporal, multispectral thermal infrared data were acquired of a small flow emplaced from a tumulus. An inverse correlation between temperature and emissivity was found, which was then integrated into the PyFLOWGO model. Incorporating a temperature-dependent emissivity term results in a 5% increase in flow length and < 75% lower total cumulative heat flux for the small flow. To evaluate the scalability of this relationship, we applied the modified PyFLOWGO model to simulations of the 2018 Lower East Rift Zone fissure 8 flow, emplaced between May 27 and June 3. Our model improves the emplacement match because of the ~ 30% lower heat flux resulting in a 7% longer flow compared to modeling using a constant emissivity (0.95). This 5–7% increase in length prior to ocean entry, realized by an accurate temperature-dependent emissivity term, is critical for developing the most accurate model of future flow hazard assessments, particularly if population centers lie in the flow’s path.

Funder

Earth Sciences Division

Directorate for Geosciences

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3