Brecciation and fracturing by water ingress into the Genbudo basaltic andesitic lava flow, Iwate volcano, northeastern Japan

Author:

Hoshide TakashiORCID,Ishibashi Nao,Iwahashi Keisuke

Abstract

AbstractThe Genbudo lava, the late Pleistocene basaltic-andesitic lava flow in the southwestern part of Iwate Volcano, Japan, is a 70 m thick columnar jointed flow that can be divided into three parts from bottom to top: the colonnade, the entablature, and the partly-brecciated uppermost part. Two main types of fractures developed in the entablature: pseudopillow fractures that formed in a branching network-like pattern throughout the entablature, and sheet fractures with curved surfaces that are nearly parallel to each other. At the uppermost part of the flow, finger-like structures of lava extend upward from the coherent lava, and cogenetic autoclastic rocks form between the fingers. This occurrence suggests that hyaloclastites were generated during emplacement in the uppermost part of the flow, apparently when water from a dammed river valley covered the flow. The texture of the lava near the pseudopillow fractures in the entablature is commonly hypocrystalline, while the texture in other parts is holocrystalline. There are two types of pyroxene microlites, large prismatic (average size ~ 30 µm) and dendritic (< 10 µm in length) crystals in the lava near the pseudopillow fractures. These suggest that the cooling rate of the lava was greatest in the vicinity of the pseudopillow fractures. Networks of palagonite-filled micro-fractures (less than 10 µm in width) are found in this part of the flow, and many bubbles are observed along the fractures. This is clear evidence that the rapid cooling of the lava was caused by water infiltration through the pseudopillow fractures. From the measurement of Fe-rich droplet sizes that formed due to liquid immiscibility within the lava, we estimate the cooling rate within the colonnade as about 49 °C/h and within the entablature as 642 °C/h, consistent with much more rapid cooling by water infiltration from above.

Funder

Akita University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3