Seismic velocity variations associated with the 2018 lower East Rift Zone eruption of Kīlauea, Hawaiʻi

Author:

Flinders Ashton F.ORCID,Caudron CorentinORCID,Johanson Ingrid A.ORCID,Taira Taka’akiORCID,Shiro BrianORCID,Haney MatthewORCID

Abstract

AbstractThe 2018 lower East Rift Zone eruption of Kīlauea (Hawai‘i) marked a dramatic change in the volcano’s 35-year-long rift zone eruption. The collapse of the middle East Rift Zone vent Pu‘u ‘Ō‘ō was followed by one of the volcano’s most voluminous eruptions in 500 years. Over the course of this 3-month eruption, the draining of summit-stored magma led to near-daily collapses of a portion of the caldera and ultimately up to 500 m of summit subsidence. While deformation data indicated that the summit and middle East Rift Zone were inflating for the previous several years, why Pu‘u ‘Ō‘ō collapsed and what initiated down-rift dike propagation remains unclear. Using ambient noise seismic interferometry, we show that a Ml5.3 decollement earthquake beneath Kīlauea’s south flank in June 2017 induced a coseismic decrease of up to 0.30% in seismic velocity throughout the volcano. This velocity decrease may have been caused by dynamic stress–induced shallow crustal fracture, i.e., weakening to dilatant crack growth, and was greatest near Pu‘u ‘Ō‘ō. Additionally, we verify a pre-eruptive increase in seismic velocity, consistent with increasing pressurization in the volcano’s shallow summit magma reservoir. This velocity increase occurred coincident with the first in a series of lower-crustal earthquake swarms, 6 days before a 2-month period of rapid summit and middle East Rift Zone inflation. The increase in up-rift magma-static pressure, combined with the pre-existing weakness from the June 2017 earthquake, may have facilitated down-rift dike propagation and the devastating 2018 eruption.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3