The exposed Mule Creek vent deposits record the structure of a volcanic conduit during a hybrid explosive–effusive eruption

Author:

Unwin Holly E.ORCID,Tuffen Hugh,Wadsworth Fabian B.,Phillips Emrys R.,James Mike R.,Foster Annabelle,Kolzenburg Stephan,Castro Jonathan M.,Porritt Lucy A.

Abstract

AbstractSilicic volcanic eruptions commonly begin with the explosive ejection of pyroclastic material, before transitioning to gentler effusion-dominated activity. Well-exposed dissected silicic systems are scarce and poorly studied, hindering the advances in our understanding of the explosive–effusive transition needed to improve interpretations of volcanic unrest and hazard forecasting. The Mule Creek vent (New Mexico, USA) is a dissected silicic conduit that records the processes controlling conduit formation and evolution, and the role tuffisites (fractures filled with variably welded pyroclasts) play in conduit dynamics. Here, we use decimeter-scale photo-mapping of lithostratigraphic units and thin section analysis to differentiate and interpret three dominant emplacement styles during vent evolution. First, there was repeated deposition and erosion of pyroclastic material at the conduit walls, recorded by erosive surfaces in pyroclastic breccia and agglomerates at the conduit margins. Second, sub-vertical domains of dense melt-dominated magma were emplaced and preserved as glass-dominated vitrophyre and brecciated vitrophyre, with the textural hallmarks of assembly from welding of pyroclasts. Finally, the sub-horizontal fracturing of previously deposited lithologies produced laterally cross-cutting tuffisites. The vent deposits track the widening and then narrowing of the conduit through time and reflect progressive insulation and generally higher temperatures towards the conduit center as pyroclasts accumulate. Welding of pyroclastic fill and the formation of dense vitrophyres towards the conduit center lowers deposit porosity and effective wall permeability. This drives localized gas pressure increases and results in gas-driven fracturing, generating tuffisites, which act as transient outgassing pathways. The structure of the Mule Creek vent records an explosive–effusive transition, constraining the processes controlling conduit evolution and aiding our interpretation of volcanic unrest.

Funder

Natural Environment Research Council

British Geological Survey

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3