Unusually high SO2 emissions and plume height from Piton de la Fournaise volcano during the April 2020 eruption

Author:

Hayer C.ORCID,Burton M.ORCID,Ferrazzini V.ORCID,Esse B.ORCID,Di Muro A.ORCID

Abstract

AbstractPiton de la Fournaise volcano, La Réunion, France, erupted between the 2 and 6 April 2020, one of a series of eruptive phases which occur typically two or three times per year. Here, we use back trajectory analysis of satellite data from the TROPOMI instrument to determine that gas emissions during the June 2020 eruption were of unusually high intensity and altitude, producing 34.9 ± 17.4 kt of SO2 and plume heights up to 5 km a.s.l. The early stages of the eruption (2–4 April 2020) were characterised by relatively low SO2 emission rates despite strong low frequency tremor (LFT); the latter phase followed an increase in intensity and explosivity in the early hours of 5 April 2020. This period included lava fountaining, significantly increased SO2 emission rates, increased high frequency tremor (HFT) and decreased LFT. Using the PlumeTraj back trajectory analysis toolkit, we found the peak SO2 emission rate was 284 ± 130 kg/s on the 6 April. The plume altitude peaked at ~ 5 km a.s.l. on 5 April, in the hours following a sudden increase in explosivity, producing one of the tallest eruption columns recorded at Piton de la Fournaise. PlumeTraj allowed us to discriminate each day’s SO2, which otherwise would have led to a mass overestimate due to the plumes remaining visible for more than 24 h. The eruption exhibited a remarkable decoupling and anti-correlation between the intensity of the LFT signal and that of the magma and gas emission rates. LFT intensity peaked during the first phase with low magma and SO2 emissions, but quickly decreased during the second phase, replaced by unusually strong HFT. We conclude that the observation of strong HFT is associated with higher intensity of eruption, degassing, and greater height of neutral buoyancy of the plume, which may provide an alert to the presence of greater hazards produced by higher intensity eruptive activity. This might be particularly useful when direct visual observation is prevented by meteorological conditions. This eruption shows the importance of combining multiple data sets when monitoring volcanoes. Combining gas and seismic data sets allowed for a much more accurate assessment of the eruption than either could have done alone.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3