High CO2 content in magmas of the explosive andesitic Enco eruption of Mocho-Choshuenco volcano (Chile)

Author:

Feignon Jean-GuillaumeORCID,Cluzel Nicolas,Schiavi Federica,Moune Séverine,Roche OlivierORCID,Clavero Jorge,Schiano Pierre,Auxerre Marion

Abstract

Abstract Mocho-Choshuenco volcano has produced several highly explosive eruptions during its history, which make it one of the most hazardous volcanoes in the southern volcanic zone of Chile, although it is still relatively little studied to date. We present a geochemical study of the products of the sub-Plinian, andesitic, Enco eruption that occurred about 1600 years ago. We determined the major and trace elements compositions, as well as the volatile (H2O, CO2, Cl, and S) contents of melt inclusions trapped in minerals (olivine, plagioclase, and pyroxene) using electron microprobe, ion microprobe (SIMS), and 3D confocal Raman mapping. Though the whole-rock composition of the Enco magma is andesitic (60.2 ± 1.1 wt.% SiO2), the melt inclusions have SiO2 contents ranging from 50.3 to 67.3 wt.%, following the magmatic series of Mocho-Choshuenco, and the compositions of the most mafic melt inclusions are close to those of the most mafic erupted magmas. Geochemical modeling indicates that mixing occurred between a mafic magma and an andesitic-to-dacitic magma. Glass analysis revealed typical parental arc magma values for H2O (2.6–3.8 wt.%), S (116–1936 ppm), and Cl (620–1439 ppm). However, CO2 contents are very high in some melt inclusions with concentrations above 4000 ppm (measured in the glass), suggesting trapping depths >  ~ 17–22 km. Presence of solid carbonates inside inclusion-hosted bubbles clearly indicates that the CO2 contents measured in the glass phase were minimum values. We conclude that a CO2-rich basaltic magma ascended and mixed with a shallower andesitic magma. The magma cooled and exsolved high amounts of CO2, which may have dramatically increased the pressure and triggered the highly explosive Enco eruption.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3