Rheological change and degassing during a trachytic Vulcanian eruption at Kilian Volcano, Chaîne des Puys, France

Author:

Colombier MathieuORCID,Shea Thomas,Burgisser Alain,Druitt Timothy H.,Gurioli Lucia,Müller Dirk,Cáceres Francisco,Hess Kai-Uwe,Boivin Pierre,Miallier Didier,Dingwell Donald B.

Abstract

AbstractMagma ascent during silicic dome-forming eruptions is characterized by significant changes in magma viscosity, permeability, and gas overpressure in the conduit. These changes depend on a set of parameters such as ascent rate, outgassing and crystallization efficiency, and magma viscosity, which in turn may influence the prevailing conditions for effusive versus explosive activity. Here, we combine chemical and textural analyses of tephra with viscosity models to provide a better understanding of the effusive-explosive transitions during Vulcanian phases of the 9.4 ka eruption of Kilian Volcano, Chaîne des Puys, France. Our results suggest that effusive activity at the onset of Vulcanian episodes at Kilian Volcano was promoted by (i) rapid ascent of initially crystal-poor and volatile-rich trachytic magma, (ii) a substantial bulk and melt viscosity increase driven by extensive volatile loss and crystallization, and (iii) efficient degassing/outgassing in a crystal-rich magma at shallow depths. Trachytic magma repeatedly replenished the upper conduit, and variations in the amount of decompression and cooling caused vertical textural stratification, leading to variable degrees of crystallization and outgassing. Outgassing promoted effusive dome growth and occurred via gas percolation through large interconnected vesicles, fractures, and tuffisite veins, fostering the formation of cristobalite in the carapace and talus regions. Build-up of overpressure was likely caused by closing of pore space (bubbles and fractures) in the dome through a combination of pore collapse, cristobalite formation, sintering in tuffisite veins, and limited pre-fragmentation coalescence in the dome or underlying hot vesicular magma. Sealing of the carapace may have caused a transition from open- to closed- system degassing and to renewed explosive activity. We generalize our findings to propose that the broad spectrum of eruptive styles for trachytic magmas may be inherited from a combination of characteristics of trachytic melts that include high water solubility and diffusivity, rapid microlite growth, and low melt viscosity compared to their more evolved subalkaline dacitic and rhyolitic equivalents. We show that trachytes may erupt with a similar style (e.g., Vulcanian) but at significantly higher ascent rates than their andesitic, dacitic, and rhyolitic counterparts. This suggests that the periodicity of effusive-explosive transitions at trachytic volcanoes may differ from that observed at the well-monitored andesitic, dacitic, and rhyolitic volcanoes, which has implications for hazard assessment associated with trachytic eruptions.

Funder

ERC ADV 2018

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3