Morpho-structural criteria for the identification of spreading-induced deformation processes potentially compromising stratovolcano stability

Author:

Rincón M.ORCID,Márquez A.,Herrera R.,Martín-González F.,López I.,Crespo-Martín C.

Abstract

AbstractCharacterisation of surface deformation at stratovolcanoes is essential for a better understanding of the processes that can compromise edifice structural stability and potential for flank collapse. Spreading produced by the presence of a hydrothermal system or intrusion of a viscous magma body can produce similar deformation signatures, and both processes have implications for flank instability. In this work, we perform analogue models and consider examples from real volcanoes (Damavand, Ubinas, Semeru and Casita) so as to characterise and recognise surface deformation patterns produced by spreading due to the presence of a hydrothermal system and in response to magma intrusion. The experiments show that there are differences in the resulting surface deformation associated with each process. Magma intrusion results in a sharp transition between areas of subsidence and uplift, and is associated with faults with oblique strikes in the upper part of the edifice. Instead, asymmetric flank spreading is associated with hydrothermal system and results in flank bulging close to the base of the edifice. Although laboratory analogue models show different deformation responses that could be diagnostic of the associated processes, application in the field is difficult as often these diagnostic features are not preserved during evolution. However, basal bulging represents a potential diagnostic for the identification of asymmetric volcano flank spreading associated with hydrothermal activity, and the potential for instability. Remote sensing techniques can allow identification of such surface deformation features, providing a useful tool for hazard assessment and design of monitoring strategies at potentially unstable volcanoes.

Funder

Universidad Rey Juan Carlos

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3