Deformation, seismicity, and monitoring response preceding and during the 2022 Fagradalsfjall eruption, Iceland

Author:

Parks MichelleORCID,Sigmundsson Freysteinn,Drouin Vincent,Hjartardóttir Ásta R.,Geirsson Halldór,Hooper Andrew,Vogfjörd Kristín S.,Ófeigsson Benedikt G.,Hreinsdóttir Sigrún,Jensen Esther H.,Einarsson Páll,Barsotti Sara,Fridriksdóttir Hildur M.

Abstract

AbstractFollowing two periods of dike intrusion in 2021 at Fagradalsfjall, Iceland, one of which led to an eruption, a third dike intrusion commenced on 30 July 2022. A sudden increase in seismicity occurred within the diking area, with approximately 1700 automatically detected earthquakes > M1 within 24 h. Strong earthquakes were felt over several days within a wider area (largest MW 5.3). The timeline and spatial distribution of seismicity suggested it resulted from diking, together with triggered seismicity in nearby areas releasing stored tectonic stress. Geodetic observations revealed displacements consistent with a dike intrusion, and geodetic modeling on 2 August revealed a best-fit model with a shallow top depth of the dike (~1 km), and high magma inflow rate (~49 m3/s). Also considering a decline in seismicity, a warning was issued that the likelihood of a new eruption in the coming days was high. An effusive eruption started the next day (3 August) on a ~375-m-long fissure, with an initial extrusion rate of 32 m3/s. The projected surface location of the dike (from the optimal model) was within 49–110 m of the eruptive fissure. We present a timeline of the activity and monitoring response in the days both preceding and following the eruption onset. We compare the details of the activity that occurred prior to this diking and eruption to the previous events at Fagradalsfjall to improve understanding of unrest preceding eruptions.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3