Abstract
Abstract
Volcano science has been deeply developing during last decades, from a branch of descriptive natural sciences to a highly multi-disciplinary, technologically advanced, quantitative sector of the geosciences. While the progress has been continuous and substantial, the volcanological community still lacks big scientific endeavors comparable in size and objectives to many that characterize other scientific fields. Examples include large infrastructures such as the LHC in Geneva for sub-atomic particle physics or the Hubble telescope for astrophysics, as well as deeply coordinated, highly funded, decadal projects such as the Human Genome Project for life sciences. Here we argue that a similar big science approach will increasingly concern volcano science, and briefly describe three examples of developments in volcanology requiring such an approach, and that we believe will characterize the current decade (2020–2030): the Krafla Magma Testbed initiative; the development of a Global Volcano Simulator; and the emerging relevance of big data in volcano science.
Funder
Horizon 2020 Framework Programme
EPOS-IT
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology
Reference40 articles.
1. Anantrasirichai N, Biggs J, Albino F, Bull D (2019) The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series. Geophys Res Lett 21:11850–11858
2. Anantrasirichai N, Biggs J, Albino F, Hill P, Bull D (2018) Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J Geophys Res Solid Earth 123:6592–6606
3. Axelsson G, Egilson T, Gylfadottir SS (2013) Modelling of temperature conditions near the bottom of well IDDP-1 in Krafla. Northeast Iceland Gothermics 49:49–57
4. Bailo D, Sbarra M (2017) EPOS – European Plate Observing System: applying the VRE4EIC virtual research environment model in the solid Earth science domain. ERCIM News 109:13–14
5. Blundy J, Afanasyev A, Melnik O, Tattitch B, Sparks RSJ, Utkin I (2021) The economic potential of copper-bearing sub-volcanic brines. Royal Soc Open Sci 8:202192
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献