In situ observation of the percolation threshold in multiphase magma analogues

Author:

Colombier M.ORCID,Wadsworth F. B.,Scheu B.,Vasseur J.,Dobson K. J.,Cáceres F.,Allabar A.,Marone F.,Schlepütz C. M.,Dingwell D. B.

Abstract

AbstractMagmas vesiculate during ascent, producing complex interconnected pore networks, which can act as outgassing pathways and then deflate or compact to volcanic plugs. Similarly, in-conduit fragmentation events during dome-forming eruptions create open systems transiently, before welding causes pore sealing. The percolation threshold is the first-order transition between closed- and open-system degassing dynamics. Here, we use time-resolved, synchrotron-source X-ray tomography to image synthetic magmas that go through cycles of opening and closing, to constrain the percolation threshold ΦC at a range of melt crystallinity, viscosity and overpressure pertinent to shallow magma ascent. During vesiculation, we observed different percolative regimes for the same initial bulk crystallinity depending on melt viscosity and gas overpressure. At high viscosity (> 106 Pa s) and high overpressure (~ 1–4 MPa), we found that a brittle-viscous regime dominates in which brittle rupture allows system-spanning coalescence at a low percolation threshold (ΦC~0.17) via the formation of fracture-like bubble chains. Percolation was followed by outgassing and bubble collapse causing densification and isolation of the bubble network, resulting in a hysteresis in the evolution of connectivity with porosity. At low melt viscosity and overpressure, we observed a viscous regime with much higher percolation threshold (ΦC > 0.37) due to spherical bubble growth and lower degree of crystal connection. Finally, our results also show that sintering of crystal-free and crystal-bearing magma analogues is characterised by low percolation thresholds (ΦC = 0.04 – 0.10). We conclude that the presence of crystals lowers the percolation threshold during vesiculation and may promote outgassing in shallow, crystal-rich magma at initial stages of Vulcanian and Strombolian eruptions.

Funder

Paul Scherrer Institut

European Research Council

NERC

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3