Surface fractures generated during the 2021 Reykjanes oblique rifting event (SW Iceland)

Author:

Bufféral SimonORCID,Panza Elisabetta,Mannini Stefano,Hjartardóttir Ásta Rut,Nobile Adriano,Gies Nils,Óskarsson Birgir Vilhelm,Ruch Joël

Abstract

AbstractWe use a comprehensive dataset of field observations, high spatial resolution drone orthomosaics and digital terrain models (DTMs) to map, quantify and characterize the extensive ground fracturing related to the 2021 seismo-tectonic and volcanic activity in the Reykjanes Peninsula (Iceland). The dataset, spans an area of about 30 km$$^2$$ 2 , where we map nearly 20 000 ground cracks with metric to decametric lengths and centimetric extensional offsets, revealing a dominant dextral shear, in agreement with published seismic data. Although striking in a direction similar to the volcanic systems in the Reykjanes Peninsula (N030–040), most fractures appear as en-échelon structures globally aligned along N-S-striking fault zones up to 3–4 km long. By examining the timing of ground fracturing through repeated field observations, seismic data and InSAR images, we associate a fracture zone with most earthquakes of M$$_\omega \ge 5.0$$ ω 5.0 that occurred in the month preceding the March 2021 Fagradalsfjall eruption. We describe three preexisting N-S fault zones, with fault segments that were reactivated up to three times during the pre-eruptive seismic activity, while the magma intrusion did not trigger graben-related ground fractures typically observed during magmatic injections. Our depiction of a system dominated by strike-slip tectonic features helps in understanding the geometry and bookshelf-mode of tectonic activity along a diffuse and highly oblique extensional plate boundary. Evidence of transient fracturing is typically quickly lost because of erosion or lava flow burial, highlighting a potential under-representation of diffuse fracturing when studying old tectonic and volcanic systems.

Funder

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3