The porosity of felsic pyroclasts: laboratory validation of field-based approaches

Author:

Pisello AlessandroORCID,Kueppers Ulrich,Düffels Kai,Nomikou Paraskevi,Dingwell Donald B.,Perugini Diego

Abstract

AbstractVolcanic eruptions are driven by magma rising through Earth’s crust. The style of an eruption depends on intrinsic and extrinsic parameters and is commonly a dynamic process. Thorough and holistic investigation of the related products is key to understanding eruptive phenomena and assessment of volcano-specific hazards. Models of such phenomena are constrained by quantification of the dispersal, the grain size distribution, and pyroclast textures. Pyroclast texture may be described in part by measurements of density and porosity, which depend on pyroclast volume determination. Yet volume determination of irregularly shaped pyroclasts cannot be achieved with geometrical laws, instead necessitating the use of alternative methodologies. Here, we test three methodologies to quantify pyroclast volume on a set of clasts collected from the Minoan eruption deposits from Santorini, Greece. We compare (1) a manual method for obtaining the lengths of three orthogonal axes of the pyroclast with a caliper, (2) an optical method to measure the longest and shortest axes of the pyroclast via multiple photographs, and (3) an Archimedean buoyancy-based method. While the optical and manual methods provide almost identical values of pyroclast volume when tested under laboratory conditions, there is a discrepancy between these two methods and the Archimedean method, which produces an overestimation of ca. 13% in volume. This discrepancy has little impact on the subsequent assessment of porosity and density for which the natural variability of values is observed to be broader. We therefore propose using the manual approach in the field as a simple and fast, yet reliable, method to obtain large volumes of quantitative data on the texture of erupted products, and we also provide a correction factor for in-field volume assessment of rhyodacitic pumices.

Funder

Marie Curie

European Research Council

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3