Decompression and degassing, repressurization, and regassing during cyclic eruptions at Guagua Pichincha volcano, Ecuador, 1999–2001

Author:

Wright H. M. N.ORCID,Cioni R.ORCID,Cashman K. V.ORCID,Mothes P.ORCID,Rosi M.ORCID

Abstract

AbstractIn 1999–2001, Guagua Pichincha volcano, Ecuador, produced a series of cyclic explosive and effusive eruptions. Rock samples, including dense blocks and pumiceous clasts collected during the eruption sequence, and ballistic bombs later collected from the crater floor, provide information about magma storage, ascent, decompression, degassing, repressurization, and regassing prior to eruption. Pairs of Fe-Ti oxides indicate equilibrium within 1.2–1.5 log units above the NNO oxidation buffer and equilibrium temperatures from 805 to 905 °C. Melt inclusions record H2O contents of 2.7–4.6 wt% and CO2 contents (uncorrected for CO2 segregation into bubbles) from 19 to 310 ppm. Minimum melt inclusion saturation pressures fall between 69 and 168 MPa, or equilibration depths of 2.8 and 6.8 km, the lower end of which is coincident with the maximum inferred equilibration depths for the most vesicular breadcrust bombs sampled. Amphibole phenocrysts lack breakdown rims (except for one sample) and plagioclase phenocrysts have abundant oscillatory compositional zones. Plagioclase areal microlite number densities (Na) range over less than one order of magnitude (8.9×103–8.7×104 mm-2) among all samples, with the exception of a dense, low crystallinity sample (Na = 3.0×103 mm−2) and a pumiceous sample erupted on 17 December 1999 (Na = 1.7×103 mm−2). Plagioclase microlite shapes include tabular, hopper, and swallowtail forms. Taken together, the relatively high plagioclase microlite number densities, the high number of oscillatory zones in plagioclase phenocrysts, the presence of CO2 in groundmass glass, seismicity, and time-varying tilt cycles provide a picture of sudden evacuation of magma residing at different levels in the shallow conduit. Explosive eruptions punctuate inter-eruptive repose periods marked by time-varying rates of degassing (volatile fluxing) and re-pressurization. Shallow residence time in the conduit was sufficient to allow precipitation of silica-phase in the groundmass, but insufficient to allow breakdown of hornblende phenocrysts, with the one exception of the final dome sample from 2000, which has the longest preceding repose time. These results support a model of cyclic pressure cycling, volatile exsolution and regassing, and magma decompression decoupled from ascent.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3