Rapid provision of maps and volcanological parameters: quantification of the 2021 Etna volcano lava flows through the integration of multiple remote sensing techniques

Author:

Proietti CristinaORCID,De Beni EmanuelaORCID,Cantarero MassimoORCID,Ricci TullioORCID,Ganci GaetanaORCID

Abstract

AbstractAt active volcanoes recurring eruptive events, erosive processes and collapses modify the edifice morphology and impact monitoring and hazard mitigation. At Etna volcano (Italy) between February and October 2021, 57 paroxysmal events occurred from the South-East Crater (SEC), which is currently its most active summit crater. Strombolian activity and high lava fountains (up to 4 km) fed lava flows towards the east, south and south-west, and caused fallout of ballistics (greater than 1 m in diameter) within 1–2 km from the SEC. The impacted area does not include permanent infrastructure, but it is visited by thousands of tourists. Hence, we rapidly mapped each lava flow before deposits became covered by the next event, for hazard mitigation. The high frequency of the SEC paroxysms necessitated integration of data from three remote sensing platforms with different spatial resolutions. Satellite (Sentinel-2 MultiSpectral Instrument, PlanetScope, Skysat and Landsat-8 Operational Land Imager) and drone images (visible and thermal) were processed and integrated to extract digital surface models and orthomosaics. Thermal images acquired by a permanent network of cameras of the Istituto Nazionale di Geofisica e Vulcanologia were orthorectified using the latest available digital surface model. This multi-sensor analysis allowed compilation of a geodatabase reporting the main geometrical parameters for each lava flow. A posteriori analysis allowed quantification of bulk volumes for the lava flows and the SEC changes and of the dense rock equivalent volume of erupted magma. The analysis of drone-derived digital surface models enabled assessment of the ballistics’ distribution. The developed methodology enabled rapidly and accurate characterisation of frequently occurring effusive events for near real-time risk assessment and hazard communication.

Funder

Istituto Nazionale di Geofisica e Vulcanologia

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3