Numerical Investigation of Slurry Pressure Drop at Different Pipe Roughness in a Straight Pipe Using CFD

Author:

Joshi Tanuj,Parkash Om,Krishan Gopal

Abstract

AbstractSlurry flow (water–glass beads) through a horizontal pipe of diameter, 0.0549 m and length, 3.8 m with two particle sizes, i.e., 125- and 440-micron, has been numerically modeled and investigated based on the kinetic theory of slurry transportation. The effect of particles interaction on the pipe flow characteristics such as velocity profile, wall shear stress, vector regime, granular pressure and temperature has been evaluated at different solid concentration and flow velocity range. It is well established that the pressure drop is the key parameter for the design of efficient slurry pipeline system, which is influenced by factors such as flow velocity, slurry viscosity, solid concentration, pipe material and pipe geometry. However, to best of our knowledge, the estimation of pressure drop at different pipe roughness height and a concentration range of 40–60% is not yet established. Therefore, in the present work, the numerical simulation is carried out for slurry flow through a horizontal pipeline at different roughness heights (Rh = 10–50 micron) and Prandtl numbers, i.e., 1.34, 2.14, 3.42 and 5.83. The kinetic parameters are calculated at a flow velocity (Vm) of 1–5 ms−1 and solid concentration (Cw) range of 40–60%. The results and procedure of the current simulation are validated against the available experimental results in the literature. The outcomes of the present work reveals that pressure drop increases with increase in pipe roughness height for the chosen velocity and solid concentration range. In addition, the larger particle is found to have more influence on the pressure, velocity, temperature distribution for the entire range of flow velocity and solid concentration. Furthermore, settling velocity and specific energy consumption are also predicted and discussed through the slurry pipeline. The findings show that the settling velocity of particle increases with increase in particle size at different Prandtl number. The energy efficiency for solid transportation through pipeline at different Prandtl numbers and particle size are also evaluated. Based on the results, it is concluded that specific energy efficiency varies with solid concentration and particle size, i.e., higher concentration and larger particle size demonstrates higher energy consumption. Furthermore, fluid at low Prandtl number exhibits higher energy consumptions. In order to design the efficient slurry pipeline system, it is recommended that the slurry must be transported at low velocity and high Prandtl number.

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3