Improved Process Monitoring Scheme Using Multi-Scale Independent Component Analysis

Author:

Kini K Ramakrishna,Madakyaru MudduORCID

Abstract

AbstractThe task of fault detection is crucial in modern chemical industries for improved product quality and process safety. In this regard, data-driven fault detection (FD) strategy based on independent component analysis (ICA) has gained attention since it improves monitoring by capturing non-gaussian features in the process data. However, presence of measurement noise in the process data degrades performance of the FD strategy since the noise masks important information. To enhance the monitoring under noisy environment, wavelet-based multi-scale filtering is integrated with the ICA model to yield a novel multi-scale Independent component analysis (MSICA) FD strategy. One of the challenges in multi-scale ICA modeling is to choose the optimum decomposition depth. A novel scheme based on ICA model parameter estimation at each depth is proposed in this paper to achieve this. The effectiveness of the proposed MSICA-based FD strategy is illustrated through three case studies, namely: dynamic multi-variate process, quadruple tank process and distillation column process. In each case study, the performance of the MSICA FD strategy is assessed for different noise levels by comparing it with the conventional FD strategies. The results indicate that the proposed MSICA FD strategy can enhance performance for higher levels of noise in the data since multi-scale wavelet-based filtering is able to de-noise and capture efficient information from noisy process data.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3