Functionalization of Biomass-derived Activated Carbon and Electrochemical Reduction for the Recovery of Gold from Mobile Phone Leachate

Author:

Firmansyah Mochamad LutfiORCID,Amalina Ilma,Rizki Intan Nurul,Alfaza Asmaul Mashad,Jiwanti Prastika Krisma,Jalil Aishah Abdul,Goto Masahiro

Abstract

AbstractIn this age of cutting-edge technology, electronic equipment consumption, such as mobile phones, has increased tremendously. This was followed by a staggering increase in electronic waste (e-waste). However, it has been known that e-wastes contain higher amounts of precious metals than pristine sources, such as Au, which is valuable as an alternative precious metal source. Due to its various advantages, adsorption has emerged as one of the most common metal removal or recovery methods. A crucial aspect of adsorption is developing a cost-effective adsorbent for selective recovery of Au from the e-wastes. Thus, functionalized biomass-based adsorbent was developed to recover precious metals from e-waste. Functionalized activated carbon (ACIL900) has an appealing high adsorption capacity (116.2 mg g−1) performance and follows the chemisorption route, which fits with the monolayer model. The presence of IL boosts the adsorption efficiency due to its compatible interaction with the metal complexes. Remarkably, ACIL900 could quantitatively adsorb precious metals and several base metals from mobile phone leachate. The selective recovery of Au from the adsorbent was performed by sequential desorption using various solutions. Finally, Au was successfully recovered from the desorption solution using an electrochemical reduction process. ACIL900 was also found to maintain its performance for three adsorption–desorption cycles. This work reported the full recovery of Au from e-waste to its final pure product through the combination of adsorption, sequential desorption, and electrochemical reduction.

Funder

Badan Pengelola Dana Perkebunan Kelapa Sawit

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3