Multi-scale Modeling of Polymeric Composites Including Nanoporous Fillers of Milled Anodic Alumina

Author:

Rafiee RohamORCID,Eskandariyun AmiraliORCID,Larosa ClaudioORCID,Salerno MarcoORCID

Abstract

AbstractA polymer composite based on an innovative filler consisting of microscale powder of nanoporous alumina is modeled. The passing-through nanoscale pores in this system—roughly columnar cylindrical, with diameter of the order of 100 nm—are fully penetrated by the resin, which is not bonded to the inner pore walls by any chemical agent. This system, previously assessed by laboratory experiments, is modeled here for the first time, based on a computational multi-scale hierarchical approach. First, microscale representative volume element (RVE) is modeled in two steps using finite element modeling. Then, the macro-scale RVE is characterized, using a combination of micromechanical rules. The elastic response of the composite is simulated to predict its Young’s modulus. This simulation confirms the former experimental results and helps to shed light on the response of the investigated material, which may represent a novel system for use in disparate composite applications. In particular, the nanoporous microfillers composite is compared with a composite material containing the fillers of the same material yet nonporous, bonded to the matrix. It appears that, with respect to this standard concept of three-phase composites, the presence of the nanopores can compensate for the absence of the bonding agent.

Funder

Istituto Italiano di Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3