Abstract
AbstractA polymer composite based on an innovative filler consisting of microscale powder of nanoporous alumina is modeled. The passing-through nanoscale pores in this system—roughly columnar cylindrical, with diameter of the order of 100 nm—are fully penetrated by the resin, which is not bonded to the inner pore walls by any chemical agent. This system, previously assessed by laboratory experiments, is modeled here for the first time, based on a computational multi-scale hierarchical approach. First, microscale representative volume element (RVE) is modeled in two steps using finite element modeling. Then, the macro-scale RVE is characterized, using a combination of micromechanical rules. The elastic response of the composite is simulated to predict its Young’s modulus. This simulation confirms the former experimental results and helps to shed light on the response of the investigated material, which may represent a novel system for use in disparate composite applications. In particular, the nanoporous microfillers composite is compared with a composite material containing the fillers of the same material yet nonporous, bonded to the matrix. It appears that, with respect to this standard concept of three-phase composites, the presence of the nanopores can compensate for the absence of the bonding agent.
Funder
Istituto Italiano di Tecnologia
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献