Characterization of the Aluminium-Based Metal Foam Properties for Automotive Applications

Author:

Salins Sampath Suranjan,Kumar ShivaORCID,Shetty Sawan,Sachidananda H. K.,Khan Mohammad Shayan Asjad

Abstract

AbstractMetal foams are solids where the gas is filled inside uniformly in the metal matrix. Blowing agent supplies air inside the parent metal, and metal foam has emerged to be a promising material because of its low density, high absorption capacity, low thermal conductivity and high strength which finds its huge applications in automobile components. The present work deals with the application of the aluminium metal foam with different densities 200 and 400 kg/m3 in automobiles. Various tests such as toughness, hardness, bending and compression are carried out for four chosen densities, and the values are compared with the aluminium base metal. The result showed that the hardness value increased significantly by 24.48% with the rise in the density from 200 to 400 kg/m3. Maximum modulus of resilience for the low-density specimen is found to be 2.21 MJ/m3. Surface topography showed irregular pore shapes with discontinuity, resulting in a loss of cell integrity with the neighbouring cell walls. This affected the performance of the foam significantly. Thermal experiments were carried out to determine the thermal conductivity where thermal conductivity increased by 122% with the rise in the density from 200 to 400 kg/m3. Based on the results, it is concluded that aluminium foam with density 400 kg/m3 can be recommended for use in automobile applications due to its lightweight properties, which contribute to improving fuel efficiency, impact absorption capacity and the vehicle’s speed. Additionally, the air trapped within the foam cells serves as a sound barrier and insulator in cars.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3