Real-Time Investigations and Simulation on the Impact of Lighting Ambience on Circadian Stimulus

Author:

Mathew Veena,Kurian Ciji PearlORCID,Varghese Susan G.,Priyadarshini Kannika,Bhandary Siddanth S.

Abstract

AbstractIndoor lighting, incorporated with visual and circadian needs, is the upcoming goal of lighting designers. In tropical and subtropical regions, where more daylight is available, daylight harvesting is a prime source of ambient lighting indoors. This paper aims to study various cases of lighting ambience to investigate the circadian lighting capability in terms of the circadian stimulus (CS) of the system under consideration. The instances considered are simulation studies in an open office plan and real-time experimentations in a test workbench and a faculty cabin. Daylight integration was undertaken through controlled venetian blinds, tunable sources and a commercially available human-centric lighting system. The result and analysis show the influence of spectrally tunable light sources on CS rather than fixed light sources. Due to the varying CCT of tunable LED luminaire, circadian stimulation for an occupant can be easily incorporated without crossing the limits of vertical and horizontal illuminance, which may lead to visual discomfort. The findings from this study reveal that daylight–artificial light integration scheme with controlled shading and spectrally tunable source provides the optimal solution for glare-free, energy-effective and circadian entrainment, i.e. human-centric lighting (HCL). With the help of simulations, pre-evaluation will aid the lighting engineers in making a better choice among the various lighting-controlled schemes to implement HCL in indoor office spaces.

Funder

All India Council for Technical Education

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3