Artificial Neural Network–Particle Swarm Optimization (ANN-PSO) Approach for Behaviour Prediction and Structural Optimization of Lightweight Sandwich Composite Heliostats

Author:

Fadlallah Sulaiman O.,Anderson Timothy N.,Nates Roy J.

Abstract

AbstractThe necessity to diminish the heliostats’ cost so that central tower concentrating solar power (CSP) systems can stride to the forefront to become the technology of choice for generating renewable electricity is obliging the industry to consider innovative designs, leading to new materials being implemented into the development of heliostats. Honeycomb sandwich composites offer a lightweight but stiff structure that appear to be an ideal substitute for existing heliostat mirrors and their steel supporting trusses, avoiding large drive units and reducing energy consumption. However, realizing a honeycomb sandwich composite as a heliostat, among a multitude of possible combinations can be tailored from, that delivers the best trade-off between the panel’s weight reduction (broadly equates to cost) and structural integrity is cumbersome and challenging due to the complex nonlinear material behaviour, along with the large number of design variables and performance constraints. We herein offer a simulation–optimization model for behaviour prediction and structural optimization of lightweight honeycomb sandwich composite heliostats utilizing artificial neural network (ANN) technique and particle swarm optimization (PSO) algorithm. Considering various honeycomb core configurations and several loading conditions, a thorough investigation was carried out to optimally choose the training algorithm, number of neurons in the hidden layer, activation function in a network and the suitable swarm size that delivers the best performance for convergence and processing time. Carried out for three case scenarios, each with different design requirements, the results showed that the proposed integrated ANN-PSO approach provides a useful, flexible and time-efficient tool for heliostat designers to predict and optimize the structural performance of honeycomb sandwich composite-based heliostats as per desired requirements. Knowing that heliostats in the field are not all subjected to the same wind conditions, this method offers flexibility to tailor heliostats independently, allowing them to be made lighter depending on the local wind speed in the field. This could lead to reductions in the size of drive units used to track the heliostat, and the foundations required to support these structures. Such reductions would deliver real cost savings, which are currently an impediment to the wider spread use of CSP systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3