Thermo-hydraulic Investigation of a Heat Exchanger Tube Equipped with 3D-Printed Swirl Flow Generators

Author:

Aksoz Zafer Yavuz,Bogrekci Ismail,Demircioglu PinarORCID,Tunc Kerim Mehmet Murat

Abstract

AbstractHeat transfer capabilities of the heat exchangers require enhancements to save energy and decrease their size. For this purpose, the swirl generators have been widely preferred. However, the swirler inserts have not reached their optimum shape. Thus, this study experimentally and numerically investigates the impact of novel 3D-printed swirler inserts with varying twist angles in the range of 0°–450° on the thermo-hydraulic performance of solar absorber tube heat exchangers under laminar flow (Re = 513–2054) condition. Friction factor, Nusselt number, and performance evaluation criterion (PEC) were used to assess heat exchanger performance, and related correlations are provided. Tangential velocity components were also used to explore fluid flow characteristics in local analysis. Numerical investigation was done by using computational fluid dynamics adopting Finite Volume Method in ANSYS Fluent. Results show that 3D-printed swirlers considerably increase heat transfer compared to plain tube. The swirler with a twist angle of 450° led to the maximum enhancements of nearly 217% in average Nusselt number and around 1630% in friction factor at Reynolds number of 2054. Overall, increasing Reynolds number enhanced Nusselt number. The highest PEC of 1.15 was observed at a Reynolds number of 1031 using the swirler with 150° twist angle. Flow near the swirler has higher tangential velocities, hence contributing to local Nusselt number enhancement up to 453.8% compared to plain tube when swirler with twist angle of 450° utilized. It is anticipated that findings of this study can guide further related research and increase the usage of swirlers in heat exchangers.

Funder

Aydin Adnan Menderes University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3