Fresh, Setting, and Hardened Properties of Fly Ash Concrete with Nano-Silica

Author:

Baran ServanORCID,Baran Ahmet,Bicakci Sidar Nihat,Turkmenoglu Hasan Nuri,Atahan Hakan Nuri

Abstract

AbstractNano-silica (NS) may counteract the drawbacks of fly ash (FA), such as delayed setting and low early strength, by accelerating hydration and providing higher early strength in concrete. In this study, concrete mixtures having 4 different FA replacement ratios (0%, 20%, 35%, and 50% by vol.) and 3 different NS dosages (0%, 1.7%, and 3.4% by vol.) were prepared. Effect of NS on the rheology, setting times and temperature evolution during the setting period, microstructure, compressive strength, and modulus of elasticity (MOE) of concrete at constant slump (20 ± 1 cm) were investigated. Plasticizers influenced the rheological and setting properties of concrete designed at constant consistency. In terms of these properties, although there have been cases where the use of NS has shown controversy results compared to the common knowledge in literature, this situation has been associated with the demand for the plasticizers consumed to obtain constant slump. In general, NS accelerated the setting times of concrete, however, it could not completely tolerate the delay caused by FA. According to 7-day mechanical test results, using 3.4% NS almost fully recovered the 20% strength loss caused by 20% FA replacement. Even if compressive strength close to NS-free REF mixture could not be achieved with high volume FA replacement (50%), at 7 days, MOE results, comparable to NS-free REF concrete, could be achieved using 3.4% NS. At later ages, although the compressive strength varied over a wide range, i.e., from 30 to 75 MPa, MOE of FA concrete have become almost independent of the strength.

Funder

Bilimsel Araştırma Projeleri Birimi, İstanbul Teknik Üniversitesi

Istanbul Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3