Classification of Diffusion Constants of Transmitter and Receiver and Distance Between Them Using Mobile Molecular Communication via Diffusion Model

Author:

Er Mehmet BilalORCID,Isik Ibrahim,Kuran Umut,Isik Esme

Abstract

AbstractMolecular communication (MC) holds promise for enabling communication in scenarios where traditional wireless methods may be impractical or ineffective, offering unique capabilities for a range of applications in both natural and engineered systems. In this research, a novel approach to MC is explored, diverging from the standard use of stationary transmitter and receiver models typically found in the field. The study introduces a dynamic MC model, where both the transmitter and receiver are mobile within a diffusion environment. This model operates using a 5-bit system. The key finding is that the mobility of these nanodevices alters their distance, which in turn impacts the likelihood of molecule reception at the receiver. The study employs deep learning techniques, specifically a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, to categorize the mobility patterns of the receiver (Rx) and transmitter (Tx). By analyzing various mobility rates (Drx and Dtx) and distances between the Tx and Rx, the research successfully identifies the most efficient mobile MC model in terms of molecule reception rates. The use of Linear Support Vector Machine alongside the CNN and LSTM hybrid feature vector resulted in an 87.68% accuracy in predicting diffusion coefficients. Moreover, using a Cubic Support Vector with the same hybrid feature vector, the study achieved an 88.09% accuracy in estimating the distance between the transmitter and receiver. The study concludes that an increase in the mobilities of Rx and Tx correlates with a higher rate of molecule reception.

Funder

Tubitak

Harran University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3