Effects of Building Height and Seismic Load on the Optimal Performance of Base Isolation System

Author:

Dushimimana AloysORCID,Dushimimana Cyrille,Mbereyaho Leopold,Niyonsenga Aude Amandine

Abstract

AbstractSeismic isolation has been widely accepted as one of the techniques that can be used to protect structures during earthquake ground motions. However, some challenges still exist such as the optimal control of excessive isolator shear strains imposed by some ground motions. The main purpose of this study was to assess the effects of building height variation and earthquake ground motion type on the optimal performance of the seismic isolation using lead core rubber bearing (LCRB). Nonlinear time history analysis for building models of various storeys isolated by LCRB and exposed to different real earthquakes was performed. To achieve this, the equations governing the motion of the isolated three different building models were presented, and an approach for solving the equations while taking into consideration of the optimized mechanical properties of the LCRB was developed. The LCRB performance was measured in terms of elastomer shear strains, derived after an optimal criterion leading to reliable substructure and superstructure responses was reached. The results showed that the combined effects of the earthquake type and building height significantly affect the substructure responses (maximum isolator displacement, energy dissipation capacity, maximum isolator force) and the superstructure responses (storey shear forces, storey drifts, floor displacements, and floor accelerations), which in some cases lead to a need for adding a fluid damper. In this regard, an attempt to couple the LCRB with nonlinear fluid viscous damper was made, and the performance of the hybrid was assessed. It was generally found that the hybrid can positively improve the substructure responses, thereby reducing the unwanted large elastomer shear strains without adversely affecting the superstructure responses.

Funder

Universidade do Minho

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3