Cost-Effective Single-Step Synthesis of Metal Oxide-Supported Ni Catalyst for H2-Production Through Dry Reforming of Methane

Author:

Al-Fatesh Ahmed S.,Bamatraf Nouf A.,Alreshaidan Salwa B.,Abu-Dahrieh Jehad K.ORCID,patel Naitik,Ibrahim Ahmed A.,Fakeeha Anis H.,Jumah Abdulrahman bin,Kumar Rawesh

Abstract

AbstractPreparing catalysts from cheap metal precursors in a single pot are an appealing method for reducing catalytic preparation costs, minimizing chemical waste, and saving time. With regards to the catalytic conversion of dry reforming of methane, it offers the prospect of significantly reducing the cost of H2 production. Herein, NiO-stabilized metal oxides like Ni/TiO2, Ni/MgO, Ni/ZrO2, and Ni/Al2O3 are prepared at two different calcination temperatures (600 °C and 800 °C). Catalysts are characterized by X-ray diffraction, Raman spectroscopy, surface area-porosity analysis, Temperature program experiments, infrared spectroscopy, and thermogravimetry analysis. The MgO-supported Ni catalyst (Ni/MgO-600), ZrO2-supported Ni catalyst (Ni/ZrO2-600), and Al2O3-supported Ni (Ni/Al2O3-600) catalyst calcined at 600 °C show initial equal H2 yields (~ 55%). The population of CH4 decomposition sites over ZrO2-supported Ni catalyst remains highest, but H2-yield drops to 45% against high coke deposition. The catalytic activity remains constant over the Ni/MgO-600 catalyst due to the enrichment of “surface interacted CO2-species”. MgO-supported Ni catalyst calcined at 800 °C undergoes weak interactions of NiO-M′ (M′ = support), serious loss of CH4 decomposition sites and potential consumption of H2 by reverse water gas shift reaction, resulting in inferior H2 yield. H2-yield remains unaffected over an Al2O3-supported Ni catalyst even against the highest coke deposition due to the formation of stable Ni (which exsolves from NiAl2O4) and proper matching between carbon formation and rate of carbon diffusion.

Funder

King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3