Fatigue Evaluation of Sulphate-Attacked Industrial Waste-Based Concrete Using Concrete Damaged Plasticity Model

Author:

Ting Matthew Zhi Yeon,Wong Kwong SoonORCID,Rahman Muhammad Ekhlasur,Selowara Joo Meheron

Abstract

AbstractSulphate attack is a major cause of concrete deterioration in marine environments and its interaction with wave-induced cyclic loading exacerbates the damage. This study has evaluated strengths and fatigue performance (i.e. fatigue life, strain and residual displacement) of sulphate-attacked concrete containing silicomanganese slag, fly ash (FA) and silica fume (SF). Compressive strength, tensile strength and sulphate profile of sulphate-attacked concrete were measured experimentally. Sulphate-induced damage constitutive relations were formulated and used with concrete damaged plasticity (CDP) model to simulate fatigue loading. Experiment showed that incorporating silicomanganese slag lowered sulphate resistance by 4.8–6.6% due to increased sulphate intrusion, but synergy with FA and SF enhanced the resistance by 7.3–13.8% at 365 days. The sulphate penetration depth was 0–20 mm, and the intruded sulphate increased exponentially over time. To evaluate fatigue loading in CDP model, the non-uniform damage was determined as correlation between strength degradation and integral area of sulphate profile. Numerical results were in good agreement with experimental data from literature, with differences of 5.8–26.2% in fatigue life, 9.1–30.1% in fatigue strain and 18.1–41.9% in residual displacement. In long-term deterioration, numerical analysis found that increasing sulphate concentration significantly shortened fatigue life. Despite silicomanganese slag lowered concrete sulphate and fatigue resistance, the inclusion of FA and SF improved the durability and sustainability of concrete for potential marine applications.

Funder

Novakey Developer Sdn. Bhd

Curtin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3