Fiber Elastomer Modified Asphalt for the Development of Resilient Porous Asphalt Mixtures

Author:

Saudy MaramORCID,Khedr Safwan,El-Badawy Sherif

Abstract

AbstractHeavy rain is one of the extreme weather events which pose a variety of serious risks on transportation infrastructures. Porous asphalt pavement can be used as a sustainable solution to mitigate the effects of such heavy rains. The objective of this study was to study the potential of using fiber elastomer modifier (FEM) to produce porous asphalt mixtures of high quality and enhanced performance. This was done through an experimental program composed of three different phases. The first phase was the development and the rheological, chemical, and microstructural characterization of the FEM modified asphalt. The second phase focused on using FEM to produce porous asphalt mixtures using different techniques. The third phase was the characterization of the porous asphalt mixtures to study their anticipated performance. The FEM asphalt performance grade, PG (76-22), proved enhanced rheological properties in terms of better rutting resistance indicated by higher G*/sin δ over a wide range of temperatures and lower Jnr3.2 value of about 19% compared to the virgin asphalt and an enhanced fatigue cracking resistance manifested by the significant reduction in the fatigue cracking indicator G* sin δ with about 94%. Finally, porous asphalt mixtures were produced of an enhanced performance based on the dynamic modulus. Higher E* values at higher temperatures/lower frequencies and lower E* values at lower temperatures/higher frequencies were reported for the FEM porous asphalt mixture in reference to the, control dense-graded HMA mixture, promising an enhanced both rutting and fatigue resistances of the produced porous asphalt mixtures.

Funder

American University in Cairo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3