Transportation of Hybrid $${\textbf {MoS}}_2$$–$${\textbf {SiO}}_2$$/EG Nanofluidic System Toward Radially Stretched Surface

Author:

Ahmad Iftikhar,Hussain Syed IbrarORCID,Raja Muhammad Asif Zahoor,Shoaib Muhammad,Qurratulain

Abstract

AbstractA stochastic computing approach is implemented in the present work to solve the nonlinear nanofluidics system that occurs in the model of atomic physics. The process converts the partial differential nanofluidics system with suitable level of similarities transformation into nonlinear systems of differential equations. For the construction of datasets, finite difference scheme (Lobatto IIIA) is applied through different selection of collocation points for nonlinear nanofluidics system having accuracy of order four. Lobatto IIIA has a strong point to tackle extremely nonlinear systems of ordinary differential equations in smooth way. For different scenarios, datasets are well trained through computing scheme to investigate the heat transfer and thermal performance of nanofluidic transportation system of nanofluids and hybrid nanofluids toward stretching surfaces with variation of Biot number, Nusselt number and skin fraction. Furthermore, the reliability, accuracy and efficiency are endorsed through various statistical analysis and graphical illustrations of proposed computing scheme.

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3