Building datasets to support information extraction and structure parsing from electronic theses and dissertations

Author:

Ingram William A.ORCID,Wu Jian,Kahu Sampanna Yashwant,Manzoor Javaid Akbar,Banerjee Bipasha,Ahuja Aman,Choudhury Muntabir Hasan,Salsabil Lamia,Shields Winston,Fox Edward A.

Abstract

AbstractDespite the millions of electronic theses and dissertations (ETDs) publicly available online, digital library services for ETDs have not evolved past simple search and browse at the metadata level. We need better digital library services that allow users to discover and explore the content buried in these long documents. Recent advances in machine learning have shown promising results for decomposing documents into their constituent parts, but these models and techniques require data for training and evaluation. In this article, we present high-quality datasets to train, evaluate, and compare machine learning methods in tasks that are specifically suited to identify and extract key elements of ETD documents. We explain how we construct the datasets by manual labeling the data or by deriving labeled data through synthetic processes. We demonstrate how our datasets can be used to develop downstream applications and to evaluate, retrain, or fine-tune pre-trained machine learning models. We describe our ongoing work to compile benchmark datasets and exploit machine learning techniques to build intelligent digital libraries for ETDs.

Funder

Institute of Museum and Library Services

Publisher

Springer Science and Business Media LLC

Reference85 articles.

1. Artifex: PyMuPDF (2016). https://pymupdf.readthedocs.io/

2. Barthelmé, S., Trukenbrod, H., Engbert, R., et al.: Modelling fixation locations using spatial point processes. J. Vis. 13(12), 1 (2013). https://doi.org/10.1167/13.12.1

3. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V. et al. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3–7, 2019 pp 3613–3618. Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1371

4. Belval, E.: pdf2image (2017). https://pypi.org/project/pdf2image/

5. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Leen, T.K., Dietterich, T.G., Tresp, V.: (eds.) Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pp. 932–938. MIT Press (2000). https://proceedings.neurips.cc/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3