Definition of an FHIR-based multiprotocol IoT home gateway to support the dynamic plug of new devices within instrumented environments

Author:

Zampognaro Paolo,Paragliola Giovanni,Falanga Vincenzo

Abstract

AbstractInternet of Things (IoT) technologies have become a milestone advancement in the digital healthcare domain, since the number of IoT medical devices is grown exponentially, and it is now anticipated that by 2020, there will be over 161 million of them connected worldwide. Therefore, in an era of continuous growth, IoT healthcare faces various challenges, such as the collection over multiple protocols (e.g. Bluetooth, MQTT, CoAP, ZigBEE, etc.) the interpretation, as well as the harmonization of the data format that derive from the existing huge amounts of heterogeneous IoT medical devices. In this respect, this study aims at proposing an advanced Home Gateway architecture that offers a unique data collection module, supporting direct data acquisition over multiple protocols (i.e.BLE, MQTT) and indirect data retrieval from cloud health services (i.e. GoogleFit). Moreover, the solution propose a mechanism to automatically convert the original data format, carried over BLE, in HL7 FHIR by exploiting device capabilities semantic annotation implemented by means of FHIR resource as well. The adoption of such annotation enables the dynamic plug of new sensors within the instrumented environment without the need to stop and adapt the gateway. This simplifies the dynamic devices landscape customization requested by the several telemedicine applications contexts (e.g. CVD, Diabetes) and demonstrate, for the first time, a concrete example of using the FHIR standard not only (as usual) for health resources representation and storage but also as instrument to enable seamless integration of IoT devices. The proposed solution also relies on mobile phone technology which is widely adopted aiming at reducing any obstacle for a larger adoption.

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Artificial Intelligence,Computer Science Applications,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3