DeepSHARQ: hybrid error coding using deep learning

Author:

Gil Pereira Pablo,Vogelgesang Kai,Miodek Moritz,Schmidt Andreas,Herfet Thorsten

Abstract

AbstractCyber-physical systems operate under changing environments and on resource-constrained devices. Communication in these environments must use hybrid error coding, as pure pro- or reactive schemes cannot always fulfill application demands or have suboptimal performance. However, finding optimal coding configurations that fulfill application constraints—e.g., tolerate loss and delay—under changing channel conditions is a computationally challenging task. Recently, the systems community has started addressing these sorts of problems using hybrid decomposed solutions, i.e., algorithmic approaches for well-understood formalized parts of the problem and learning-based approaches for parts that must be estimated (either for reasons of uncertainty or computational intractability). For DeepSHARQ, we revisit our own recent work and limit the learning problem to block length prediction, the major contributor to inference time (and its variation) when searching for hybrid error coding configurations. The remaining parameters are found algorithmically, and hence we make individual contributions with respect to finding close-to-optimal coding configurations in both of these areas—combining them into a hybrid solution. DeepSHARQ applies block length regularization in order to reduce the neural networks in comparison to purely learning-based solutions. The hybrid solution is nearly optimal concerning the channel efficiency of coding configurations it generates, as it is trained so deviations from the optimum are upper bound by a configurable percentage. In addition, DeepSHARQ is capable of reacting to channel changes in real time, thereby enabling cyber-physical systems even on resource-constrained platforms. Tightly integrating algorithmic and learning-based approaches allows DeepSHARQ to react to channel changes faster and with a more predictable time than solutions that rely only on either of the two approaches.

Funder

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Artificial Intelligence,Computer Science Applications,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3