Recent Trends in Plasma-Assisted CO2 Methanation: A Critical Review of Recent Studies

Author:

Ullah Sana,Gao Yuan,Dou Liguang,Liu Yadi,Shao Tao,Yang Yunxia,Murphy Anthony B.

Abstract

AbstractIn recent years, enormous efforts have been devoted to alleviating global energy demand and the climate crisis. This has instigated the search for alternative energy sources with a reduced carbon footprint. Catalytic hydrogenation of CO2 to CH4, known as the methanation reaction, is a pathway to utilise CO2 and renewable hydrogen simultaneously. However, owing to the high stability of CO2 and thermodynamic limitations at higher temperatures, the methanation process is energy intensive. Non-thermal plasma technology has recently emerged as a promising approach to lowering the activation temperature of CO2. The application of a plasma coupled with catalytic materials allows the methanation reaction to occur at or near ambient conditions, with dielectric barrier discharges providing superior performance. The review considers the various catalytic materials applied for plasma-assisted catalytic CO2 methanation and assesses CO2 conversion, CH4 yield and fuel production efficiency obtained. The importance of reactor designs and process parameters are discussed in detail. The possible reaction pathways are considered based on in-situ and other diagnostics and modelling studies. Finally, a perspective on current barriers and opportunities for advances in non-thermal plasma technology for CO2 methanation is presented.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Condensed Matter Physics,General Chemical Engineering,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3