Abstract
AbstractPlasma in hydrogen-containing atmospheres is an efficient method for the reduction of iron oxides. Although a vast number of approaches were performed for the reduction of bulk Fe oxides with thermal hydrogen plasmas, there is almost no information about the non-thermal plasma reduction efficiency in the atmospheric pressure range. In the current article we present the reduction of natively oxidized iron surfaces applying a dielectric barrier discharge plasma in an Ar/H2 atmosphere at 1000 hPa. By varying the surface temperature from 25 to 300 °C, we studied the plasma reduction efficiency, which was then compared with a thermal method. Whereas plasma treatments at 25 °C and 100 °C did not result in the significant reduction of iron oxidized species, experiments at 200 °C and 300 °C yielded a reduction of approximately 88% and 91% of initial oxidized components already after 10 s, respectively. Moreover, we observed an increase in the efficiency with a plasma-thermal reduction in comparison to a thermal method, which was attributed to the presence of atomic hydrogen in the plasma phase. Analysis of morphology revealed the formation of Fe–C structures on surfaces after thermal and plasma-thermal treatments at 200 °C and 300 °C that may be connected with the diffusion of bulk contaminations to the deoxidized surface and reactions between the reduced Fe with plasma-activated adventitious carbon. Conclusively, the plasma was characterized by analyzing the reactive species and the electron temperatures.
Funder
Technische Universität Clausthal
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Condensed Matter Physics,General Chemical Engineering,General Chemistry