Integrated Transport Model for Controlled Delivery of Short-Lived Reactive Species via Plasma-Activated Liquid with Practical Applications in Plant Disease Control

Author:

Kaneko ToshiroORCID,Takashima KeisukeORCID,Sasaki ShotaORCID

Abstract

AbstractGas–liquid interfacial plasmas (GLIPs), specifically atmospheric-pressure plasmas (APPs) interacting with liquids, have garnered global interest for potential applications across various fields where reactive oxygen and nitrogen species (RONS) in both the gas and liquid phases could play a key role. However, APP-induced gas- and liquid-phase chemical reactions display spatially nonuniform features and involve a number of species; thus, they are extremely complicated and have not been fully understood and controlled. Herein, our primary focus is centered on elucidating RONS transport processes in GLIPs without direct plasma-liquid contact to reduce the complexity of this mechanism. Firstly, this review delineates the simplified transport models commonly found in general GLIP systems, including: (1) the transport of remotely generated gas-phase RONS to the liquid phase; (2) liquid-phase diffusion governing dissolution into the liquid phase and volatilization loss to the gas phase; and (3) chemical reactions in the liquid phase governing the generation and loss of short-lived RONS. Second, we delve into RONS transport using our laboratory-built plasma devices, aimed at sterilizing plant pathogens, interpreting results in line with the relevant transport models to aid the comprehension of the heterogeneous transport of RONS. Third, we discussed the innovative control of the plasma reaction process in the gas phase required to selectively synthesize N2O5, which is highly reactive at the gas–liquid interface. Finally, future prospects for the efficient utilization of unique reactions at the plasma/gas–liquid interface are discussed.

Funder

Japan Society for the Promotion of Science

FRiD Tohoku University

Plasma-bio Consortium

cLPS Nagoya University

RIEC Tohoku University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3