Dopamine adjusts the circadian gene expression of Per2 and Per3 in human dermal fibroblasts from ADHD patients

Author:

Faltraco Frank,Palm Denise,Uzoni Adriana,Borchert Lena,Simon Frederick,Tucha Oliver,Thome Johannes

Abstract

AbstractA link between dopamine levels, circadian gene expression, and attention deficit hyperactivity disorder (ADHD) has already been demonstrated. The aim of this study was to investigate the extent of these relationships by measuring circadian gene expression in primary human-derived dermal fibroblast cultures (HDF) after dopamine exposure. We analyzed circadian preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls and participants with ADHD. Circadian preference was evaluated with German Morningness-Eveningness-Questionnaire (D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different dopamine concentrations in human dermal fibroblast (HDF) cultures, the rhythmicity of circadian gene expression (Clock, Bmal1, Per1-3, Cry1) was analyzed via qRT-PCR. We found no statistical significant effect in the actigraphy of both groups (healthy controls, ADHD group) for mid-sleep on weekend days, mid-sleep on weekdays, social jetlag, wake after sleep onset, and total number of wake bouts. D-MEQ scores indicated that healthy controls had no evening preference, whereas subjects with ADHD displayed both definitive and moderate evening preferences. Dopamine has no effect on Per3 expression in healthy controls, but produces a significant difference in the ADHD group at ZT24 and ZT28. In the ADHD group, incubation with dopamine, either 1 µM or 10 µM, resulted in an adjustment of Per3 expression to control levels. A similar effect also was found in the expression of Per2. Statistical significant differences in the expression of Per2 (ZT4) in the control group compared to the ADHD group were found, following incubation with dopamine. The present study illustrates that dopamine impacts on circadian function. The results lead to the suggestion that dopamine may improve the sleep quality as well as ADHD symptoms by adjustment of the circadian gene expression, especially for Per2 and Per3.

Funder

2020 CoCA ADHD Comorbidity

Universitätsmedizin Rostock

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Psychiatry and Mental health,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3