Electrophysiological underpinnings of dysfunctional inhibitory control in adults with attention-deficit/hyperactivity disorder: evidence for reduced NoGo anteriorization

Author:

Papp SzilviaORCID,Tombor LászlóORCID,Kakuszi BrigittaORCID,Réthelyi János M.ORCID,Bitter IstvánORCID,Czobor PálORCID

Abstract

AbstractOur aim was to delineate the electrophysiological basis of dysfunctional inhibitory control of adult ADHD via investigating the anteriorization of the P3 component of the event-related brain response associated with the NoGo task condition (i.e., NoGo anteriorization, NGA). NGA is a neurophysiological measure of brain topography for cognitive response control, which indexes an overall shift of the brain’s electrical activity in anterior direction towards the prefrontal areas. While the NoGo P3 received considerable attention in the adult ADHD literature, the brain topography of this component, which reflects the inhibitory process, remains largely unaddressed. EEG recordings were obtained during a Go/NoGo task from 51 subjects (n = 26 adult patients with ADHD, n = 25 healthy controls) using a high-density, 128-channel BioSemi ActiveTwo recording system. ADHD patients had significantly lower P3 NGA response compared to controls. The decrease in NGA was related to impulsivity scores as measured by the Conners’ Adult ADHD Rating Scale: patients with higher impulsivity scores had significantly lower NGA. Treatment with stimulant medication, as compared to the lack of such treatment, was associated with a correction of the lower NGA response in ADHD patients. The current study revealed a lower NGA in adult ADHD, a finding which is consistent with the inhibitory control and frontal lobe dysfunctions described in the disorder. Our finding of the inverse relationship between NGA and impulsivity suggests that clinically more severe impulsivity is linked to a more pronounced frontal dysfunction in adult ADHD subjects.

Funder

Hungarian Brain Research Program

Semmelweis University

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Psychiatry and Mental health,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3